论文标题

带饰面的拓扑光谱带

Topological Spectral Bands with Frieze Groups

论文作者

Lux, Fabian R., Stoiber, Tom, Wang, Shaoyun, Huang, Guoliang, Prodan, Emil

论文摘要

饰面组是平面条带的整个异构体的离散亚组。我们在这里研究通过与一个自耦合种子谐振器集合中的frize群体作用所产生的特定架构材料的动力学。我们证明,在种子谐振器内部结构的不受限制重新配置下,材料的动态矩阵产生了Frieze Group的稳定组$ c^\ ast $ algebra的完整自我辅助部门。结果,在种子谐振器的位置,方向和内部结构的应用中,动态矩阵的光谱带携带完整的一组拓扑不变性,这些拓扑不变性由上述代数的K理论完全解释。通过解决K理论的发电机,我们生成了带有基本拓扑费用的模型动力矩阵,我们将使用板谐振器系统实现,以展示光谱工程中的多个应用。该论文以说明性方式编写。

Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group $C^\ast$-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源