论文标题
在超导电路中测量非亚洲系统的量子几何张量
Measuring quantum geometric tensor of non-Abelian system in superconducting circuits
论文作者
论文摘要
在过去的几十年中,拓扑在物理研究中发挥了重要作用。特别是,提供有关拓扑特性的局部信息的量子几何张量吸引了很多关注。它将揭示非亚伯系统中有趣的拓扑特性,这些拓扑特性在实践中尚未实现。在这里,我们在超导电路中使用四量量子系统来构建具有参数调制的堕落的哈密顿量。通过周期性的驱动器来操纵哈密顿量,我们模拟了Bernevig-Hughes-Zhang模型,并从干扰振荡中获得量子几何张量。此外,我们通过提取拓扑不变式来揭示其拓扑特征,并展示了一种有效的非阿布尔系统量子模拟协议。
Topology played an important role in physics research during the last few decades. In particular, the quantum geometric tensor that provides local information about topological properties has attracted much attention. It will reveal interesting topological properties in non-Abelian systems, which have not been realized in practice. Here, we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation. By manipulating the Hamiltonian with periodic drivings, we simulate the Bernevig-Hughes-Zhang model and obtain the quantum geometric tensor from interference oscillation. In addition, we reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.