论文标题

Navier-Stokes方程:关于享受能量平等的薄弱解决方案的存在

The Navier-Stokes equations: on the existence of a weak solution enjoying the energy equality

论文作者

Maremonti, Paolo

论文摘要

在最初的基准差异和在L2中的假设下,我们证明了Navier-Stokes初始边界价值问题的薄弱解决方案,享受(0,t)的能量平等,几乎在t> 0中的任何地方,尤其是在[θ,\ infty)中的所有t $ \ in [θ,\ infty)$ in t $ \ in t $ \ in t $ \ in [θ,\ infty)$ in t> 0,带有$θ:=θ:=θ(| fimis)$ fimcy(| v0 || v0 || v0 || v0 || 2)$。另外,结果使我们能够完善其他一些。

Under the assumption of an initial datum divergence free and in L2, we prove the existence of a weak solution to the Navier-Stokes initial boundary value problem enjoying the energy equality on (0,t), almost everywhere in t>0, in particular, for all t $\in [θ, \infty)$, with $θ:= θ(||v0||2)$. Also, the result allows us to refine some others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源