论文标题
retifluidnet:一种自适应和多发的深卷积网络,用于视网膜OCT分段
RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation
论文作者
论文摘要
光学相干断层扫描(OCT)有助于眼科医生评估黄斑水肿,流体的积累以及微观分辨率的病变。视网膜流体的定量对于OCT引导的治疗管理是必需的,这取决于精确的图像分割步骤。由于对视网膜流体的手动分析是一项耗时,主观且容易出错的任务,因此对快速和健壮的自动解决方案的需求增加了。在这项研究中,提出了一种新的卷积神经结构,称为retifluidnet用于多级视网膜流体分割。该模型使用新的自适应双重注意(SDA)模块,多个基于自适应的基于基于注意力的SKIP连接(SASC)以及一种新颖的多尺度深度自我监督学习(DSL)方案的层次结构表示学习纹理,上下文和边缘特征的学习。提出的SDA模块中的注意机制使该模型能够在不同级别上自动提取变形感知表示,并且引入的SASC路径进一步考虑了空间通道相互依存关系,以串联编码器和解码器单元,从而提高了表示能力。还使用包含加权版本的骰子重叠和基于边缘的基于连接的损失的联合损失函数进行了优化的retifluidnet,其中将多尺度局部损失的几个分层阶段集成到优化过程中。该模型根据三个公开可用数据集进行验证:润饰,Optima和Duke,并与几个基线进行了比较。数据集上的实验结果证明了在视网膜OCT流体分割中提出的模型的有效性,并表明建议的方法比现有的最新流体分割算法更有效,以适应各种图像扫描仪器记录的视网膜OCT扫描。
Optical coherence tomography (OCT) helps ophthalmologists assess macular edema, accumulation of fluids, and lesions at microscopic resolution. Quantification of retinal fluids is necessary for OCT-guided treatment management, which relies on a precise image segmentation step. As manual analysis of retinal fluids is a time-consuming, subjective, and error-prone task, there is increasing demand for fast and robust automatic solutions. In this study, a new convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation. The model benefits from hierarchical representation learning of textural, contextual, and edge features using a new self-adaptive dual-attention (SDA) module, multiple self-adaptive attention-based skip connections (SASC), and a novel multi-scale deep self supervision learning (DSL) scheme. The attention mechanism in the proposed SDA module enables the model to automatically extract deformation-aware representations at different levels, and the introduced SASC paths further consider spatial-channel interdependencies for concatenation of counterpart encoder and decoder units, which improve representational capability. RetiFluidNet is also optimized using a joint loss function comprising a weighted version of dice overlap and edge-preserved connectivity-based losses, where several hierarchical stages of multi-scale local losses are integrated into the optimization process. The model is validated based on three publicly available datasets: RETOUCH, OPTIMA, and DUKE, with comparisons against several baselines. Experimental results on the datasets prove the effectiveness of the proposed model in retinal OCT fluid segmentation and reveal that the suggested method is more effective than existing state-of-the-art fluid segmentation algorithms in adapting to retinal OCT scans recorded by various image scanning instruments.