论文标题

闪电引起的化学反应在潮汐地面外球星上

Lightning-induced chemistry on tidally-locked Earth-like exoplanets

论文作者

Braam, Marrick, Palmer, Paul I., Decin, Leen, Ridgway, Robert J., Zamyatina, Maria, Mayne, Nathan J., Sergeev, Denis E., Abraham, N. Luke

论文摘要

确定系外行星的宜居性和解释大气光谱需要了解它们的大气物理和化学。我们使用3D耦合气候化学模型,即具有英国化学和气溶胶框架的MET办公室统一模型,以研究闪电的出现及其对潮汐锁定的地球样系外行星的化学影响。我们模拟了其M-dwarf恒星宜居区域中的Proxima Centauri B的大气,但结果适用于类似的M-dwarf绕行行星。我们的化学网络包括Chapman臭氧反应和氧化氢(Ho $ _ {\ Mathrm {x}} $ = H+OH+HO+HO $ _2 $)和氧化氮(no $ _ {\ Mathrm {x}} $ = no+no+no $ _2 $)催化周期。我们发现,由恒星辐射(177-850 nm)驱动的光化学支持20-50公里之间的全球臭氧层。我们将闪电闪烁作为云端高度的函数,以及由N $ _2 $和O $ _2 $的热分解产生的一氧化氮(NO)产生的。快速的日后对流在替代点上及其周围的快速对流导致高达0.16的闪电闪光闪光灯$ $^{ - 2} $ yr $^{ - 1} $,在no $ _ {\ mathrm {x}}} $的高度低于20 km的日期高度以下的日期大气中。几天的臭氧变化主要由UV辐照度和HO $ _ {\ Mathrm {X}} $催化循环确定。 〜行星日期表面的45%保持在可居住的温度(t $ _ {\ mathrm {surf}} $> 273.15 K),臭氧层将表面紫外线辐射水平降低到15%。二十周年左右的热梯度导致强风,随后向no $ _ {\ mathrm {x}} $上升到夜幕降临,那里没有光化学的情况下,没有$ _ {\ mathrm {x}}} $化学涉及储层物种。我们的研究还强调了需要准确的紫外线恒星光谱以了解系外行星的大气化学。

Determining the habitability and interpreting atmospheric spectra of exoplanets requires understanding their atmospheric physics and chemistry. We use a 3-D Coupled Climate-Chemistry Model, the Met Office Unified Model with the UK Chemistry and Aerosols framework, to study the emergence of lightning and its chemical impact on tidally-locked Earth-like exoplanets. We simulate the atmosphere of Proxima Centauri b orbiting in the Habitable Zone of its M-dwarf star, but the results apply to similar M-dwarf orbiting planets. Our chemical network includes the Chapman ozone reactions and hydrogen oxide (HO$_{\mathrm{x}}$=H+OH+HO$_2$) and nitrogen oxide (NO$_{\mathrm{x}}$=NO+NO$_2$) catalytic cycles. We find that photochemistry driven by stellar radiation (177-850 nm) supports a global ozone layer between 20-50 km. We parameterise lightning flashes as a function of cloud-top height and the resulting production of nitric oxide (NO) from the thermal decomposition of N$_2$ and O$_2$. Rapid dayside convection over and around the substellar point results in lightning flash rates of up to 0.16 flashes km$^{-2}$yr$^{-1}$, enriching the dayside atmosphere below altitudes of 20 km in NO$_{\mathrm{x}}$. Changes in dayside ozone are determined mainly by UV irradiance and the HO$_{\mathrm{x}}$ catalytic cycle. ~45% of the planetary dayside surface remains at habitable temperatures (T$_{\mathrm{surf}}$>273.15 K) and the ozone layer reduces surface UV radiation levels to 15%. Dayside-nightside thermal gradients result in strong winds that subsequently advect NO$_{\mathrm{x}}$ towards the nightside, where the absence of photochemistry allows NO$_{\mathrm{x}}$ chemistry to involve reservoir species. Our study also emphasizes the need for accurate UV stellar spectra to understand the atmospheric chemistry of exoplanets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源