论文标题

事实和信息丰富的审查生成可解释的建议

Factual and Informative Review Generation for Explainable Recommendation

论文作者

Xie, Zhouhang, Singh, Sameer, McAuley, Julian, Majumder, Bodhisattwa Prasad

论文摘要

最近的模型可以产生流利和语法合成评论,同时准确预测用户评分。生成的评论表达了用户对相关产品的估计意见,通常被视为自然语言“理由”。但是,先前的研究发现,现有模型通常会产生重复性,普遍适用和通用的解释,从而导致非信息原理。此外,我们的分析表明,以前的模型生成的内容通常包含事实幻觉。这些问题要求采用新颖的解决方案,这些解决方案可以产生信息丰富的和事实扎根的解释。受到最近使用检索内容的成功的启发,除了生成参数知识外,我们建议用个性化的检索器增强发电机,在该发现者的启发下,猎犬的输出是增强发电机的外部知识。关于Yelp,TripAdvisor和Amazon Movie评论数据集的实验表明,我们的模型可以产生解释,即更可靠地需要进行现有评论,更多样化,并且由人类评估人员评为更有信息。

Recent models can generate fluent and grammatical synthetic reviews while accurately predicting user ratings. The generated reviews, expressing users' estimated opinions towards related products, are often viewed as natural language 'rationales' for the jointly predicted rating. However, previous studies found that existing models often generate repetitive, universally applicable, and generic explanations, resulting in uninformative rationales. Further, our analysis shows that previous models' generated content often contain factual hallucinations. These issues call for novel solutions that could generate both informative and factually grounded explanations. Inspired by recent success in using retrieved content in addition to parametric knowledge for generation, we propose to augment the generator with a personalized retriever, where the retriever's output serves as external knowledge for enhancing the generator. Experiments on Yelp, TripAdvisor, and Amazon Movie Reviews dataset show our model could generate explanations that more reliably entail existing reviews, are more diverse, and are rated more informative by human evaluators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源