论文标题
O'Connell-Yor聚合物的尾部界限
Tail bounds for the O'Connell-Yor polymer
论文作者
论文摘要
我们通过概率和几何技术在中等偏差方面的概率和几何技术来得出正确数量级的O'Connell-Yor聚合物的上和下边界。我们作品的投入是降雨和Emrah-Janjigian-Seppäläinen的两参数模型的生成功能的身份,以及Ganguly-Hegde和Basu-Ganguly-Ganguly-Ganguly-Ganguly-Hammond-Hegde的几何技术。作为中间结果,我们获得了从对角线的聚合物路径横向波动的强尾估计。
We derive upper and lower bounds for the upper and lower tails of the O'Connell-Yor polymer of the correct order of magnitude via probabilistic and geometric techniques in the moderate deviations regime. The inputs of our work are an identity for the generating function of a two-parameter model of Rains and Emrah-Janjigian-Seppäläinen, and the geometric techniques of Ganguly-Hegde and Basu-Ganguly-Hammond-Hegde. As an intermediate result we obtain strong tail estimates for the transversal fluctuation of the polymer path from the diagonal.