论文标题

评估噪声对变异量子本质量的性能的影响

Evaluating the impact of noise on the performance of the Variational Quantum Eigensolver

论文作者

Oliv, Marita, Matic, Andrea, Messerer, Thomas, Lorenz, Jeanette Miriam

论文摘要

量子计算机预计将对化学模拟非常有益,有望在准确性和速度方面得到显着提高。 NISQ设备上化学模拟的最突出的算法是变异量子eigensolver(VQE)。它是一种基于参数化量子电路的混合量子古典算法,该算法计算哈密顿量的基态能量,而经典优化器用于查找最佳参数值。但是,量子硬件受噪声的影响,并且需要理解在多大程度上可以降低VQE算法的性能。在本文中,我们研究了噪声对氢分子示例的影响。首先,我们比较了一组各种优化器的VQE性能,我们发现NFT是最合适的优化器。接下来,我们通过系统地提高其强度来量化不同噪声源的效果。噪声强度围绕IBM Q的超导器件共有的值而变化,并且曲线拟合用于对所获得的能量值与噪声幅度之间的关系进行建模。由于电路中的噪声量高度取决于其架构,因此我们对不同的Ansatzes进行了研究,包括硬件效率和化学启发的研究。

Quantum computers are expected to be highly beneficial for chemistry simulations, promising significant improvements in accuracy and speed. The most prominent algorithm for chemistry simulations on NISQ devices is the Variational Quantum Eigensolver (VQE). It is a hybrid quantum-classical algorithm which calculates the ground state energy of a Hamiltonian based on parametrized quantum circuits, while a classical optimizer is used to find optimal parameter values. However, quantum hardware is affected by noise, and it needs to be understood to which extent it can degrade the performance of the VQE algorithm. In this paper, we study the impact of noise on the example of the hydrogen molecule. First, we compare the VQE performance for a set of various optimizers, from which we find NFT to be the most suitable one. Next, we quantify the effect of different noise sources by systematically increasing their strength. The noise intensity is varied around values common to superconducting devices of IBM Q, and curve fitting is used to model the relationship between the obtained energy values and the noise magnitude. Since the amount of noise in a circuit highly depends on its architecture, we perform our studies for different ansatzes, including both hardware-efficient and chemistry-inspired ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源