论文标题
基于微分方程的流行模型的结构可识别性分析:基于教程的底漆
Structural identifiability analysis of epidemic models based on differential equations: A tutorial-based primer
论文作者
论文摘要
流行模型的成功应用取决于我们从有限观察结果估算模型参数的能力。在估计模型参数之前,经常被忽视的步骤包括确保模型参数可以从系统的观察到的状态结构上识别。在此基于教程的入门中,旨在为多样化的受众群体(包括学生接受动态系统培训),我们审查并提供了详细的指导,以基于daisy(使用daisial代数的差分代数方法(用于识别系统的识别性)和\ textitit {Mathematica {Mathematica}(Wolfram Research),基于差分代数方法对微分方程流行模型进行结构性可识别性分析。这种方法旨在揭示任何排除其估计的现有参数相关性。我们通过示例来证明这种方法,包括先前用于研究传输动力学和控制的隔室流行模型的教程视频。我们表明,可以通过合并来自不同模型状态的其他观察结果来补救结构可识别性,假设系统的初始条件是已知的,则使用先前的信息来修复参数相关性涉及的某些参数,或根据现有参数相关性修改模型。我们还强调了结构可识别性分析的结果如何通过指示观察到的状态变量和结构可识别性分析的结果来帮助丰富差分方程模型的隔室图。
The successful application of epidemic models hinges on our ability to estimate model parameters from limited observations reliably. An often-overlooked step before estimating model parameters consists of ensuring that the model parameters are structurally identifiable from the observed states of the system. In this tutorial-based primer, intended for a diverse audience, including students training in dynamic systems, we review and provide detailed guidance for conducting structural identifiability analysis of differential equation epidemic models based on a differential algebra approach using DAISY (Differential Algebra for Identifiability of SYstems) and \textit{Mathematica} (Wolfram Research). This approach aims to uncover any existing parameter correlations that preclude their estimation from the observed variables. We demonstrate this approach through examples, including tutorial videos of compartmental epidemic models previously employed to study transmission dynamics and control. We show that the lack of structural identifiability may be remedied by incorporating additional observations from different model states, assuming that the system's initial conditions are known, using prior information to fix some parameters involved in parameter correlations, or modifying the model based on existing parameter correlations. We also underscore how the results of structural identifiability analysis can help enrich compartmental diagrams of differential-equation models by indicating the observed state variables and the results of the structural identifiability analysis.