论文标题
海底环境中有色点云上3D KeyPoint探测器和描述符的性能评估
Performance Evaluation of 3D Keypoint Detectors and Descriptors on Coloured Point Clouds in Subsea Environments
论文作者
论文摘要
高精度亚次光学扫描仪的最新开发允许将3D键盘检测器和功能描述符在海底环境中的点云扫描上利用。但是,文献缺乏一项全面的调查,无法确定在这些挑战和新颖的环境中使用的检测器和描述符的最佳组合。本文旨在使用使用商业水下激光扫描仪收集的具有挑战性的现场数据集确定最佳的检测器/描述符对。此外,研究表明,结合纹理信息以扩展几何特征为合成数据集的特征匹配增添了鲁棒性。本文还提出了一种与水下激光扫描融合图像以产生有色点云的新方法,该方法用于研究6D点云描述符的有效性。
The recent development of high-precision subsea optical scanners allows for 3D keypoint detectors and feature descriptors to be leveraged on point cloud scans from subsea environments. However, the literature lacks a comprehensive survey to identify the best combination of detectors and descriptors to be used in these challenging and novel environments. This paper aims to identify the best detector/descriptor pair using a challenging field dataset collected using a commercial underwater laser scanner. Furthermore, studies have shown that incorporating texture information to extend geometric features adds robustness to feature matching on synthetic datasets. This paper also proposes a novel method of fusing images with underwater laser scans to produce coloured point clouds, which are used to study the effectiveness of 6D point cloud descriptors.