论文标题
它需要两个:学习计划人手合作携带
It Takes Two: Learning to Plan for Human-Robot Cooperative Carrying
论文作者
论文摘要
由于动作和状态空间的连续性,策略的多模式以及对其他代理的瞬时适应性的需求,因此合作的餐桌携带是一项复杂的任务。在这项工作中,我们提出了一种预测合作人类机器人团队的现实运动计划的方法。使用差异性神经网络(VRNN)来对人类机器人团队跨时间的轨迹变化进行建模,我们能够捕获团队未来状态的分布,同时利用交互历史记录中的信息。我们方法的关键是利用人类的演示数据来产生轨迹,在测试时间以退缩的方式与人类协同良好。基线,基于抽样的计划者RRT(迅速探索随机树)和集中式计划中的VRNN计划者之间的比较表明,VRNN产生的运动与人类示范的分布更相似,而不是RRT。结果进行了人类的用户研究表明,VRNN规划师在与任务相关的指标上的表现优于分散的RRT,并且比RRT计划者更有可能被视为人类。最后,我们在一个真正的机器人上演示了VRNN规划师,并与人类的另一个机器人配对。
Cooperative table-carrying is a complex task due to the continuous nature of the action and state-spaces, multimodality of strategies, and the need for instantaneous adaptation to other agents. In this work, we present a method for predicting realistic motion plans for cooperative human-robot teams on the task. Using a Variational Recurrent Neural Network (VRNN) to model the variation in the trajectory of a human-robot team across time, we are able to capture the distribution over the team's future states while leveraging information from interaction history. The key to our approach is leveraging human demonstration data to generate trajectories that synergize well with humans during test time in a receding horizon fashion. Comparison between a baseline, sampling-based planner RRT (Rapidly-exploring Random Trees) and the VRNN planner in centralized planning shows that the VRNN generates motion more similar to the distribution of human-human demonstrations than the RRT. Results in a human-in-the-loop user study show that the VRNN planner outperforms decentralized RRT on task-related metrics, and is significantly more likely to be perceived as human than the RRT planner. Finally, we demonstrate the VRNN planner on a real robot paired with a human teleoperating another robot.