论文标题
学习使用神经网络检查点的生成模型学习
Learning to Learn with Generative Models of Neural Network Checkpoints
论文作者
论文摘要
我们探索了一种以数据为基础的学习方法来优化神经网络。我们构建神经网络检查点的数据集,并培训有关参数的生成模型。特别是,我们的模型是有条件的扩散变压器,鉴于初始输入参数向量以及提示的丢失,误差或返回,可以预测实现所需度量的参数更新的分布。在测试时,它可以在一个更新中优化具有看不见的参数的神经网络。我们发现我们的方法成功地生成了各种损失提示的参数。此外,它可以采样多模式参数解决方案并具有有利的缩放属性。我们将方法应用于监督和强化学习中的不同神经网络体系结构和任务。
We explore a data-driven approach for learning to optimize neural networks. We construct a dataset of neural network checkpoints and train a generative model on the parameters. In particular, our model is a conditional diffusion transformer that, given an initial input parameter vector and a prompted loss, error, or return, predicts the distribution over parameter updates that achieve the desired metric. At test time, it can optimize neural networks with unseen parameters for downstream tasks in just one update. We find that our approach successfully generates parameters for a wide range of loss prompts. Moreover, it can sample multimodal parameter solutions and has favorable scaling properties. We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.