论文标题

积分检测学位3弦弦乐类

Integrals detecting degree 3 string cobordism classes

论文作者

Fiorenza, Domenico, Landi, Eugenio

论文摘要

第三个字符串Bordism组$ \ MATHRM {BORD} _3^{\ MATHRM {String}} $是$ \ Mathbb {z}/24 \ Mathbb {z} $。 Bunke-Naumann和Redden使用Waldorf的几何弦结构的概念,表现出涉及Chern-Weil形式的积分公式,代表了第一个Pontryagin类的代表,以及几何的几何弦结构的规范3型,它们意识到了同构的同性形态,以意识到同性形态$ \ Mathrm {Bord} _ {bord} _ {bort} \ mathbb {z}/24 \ mathbb {z} $。当人们认为某些天然$ \ mathrm {u}(1)$ - 值和$ \ mathbb {r} $ - 估价的3D TQFT与与串联的串联堆叠相关联,分别与几何结构相关联时,我们将展示这些公式如何自然出现。

The third string bordism group $\mathrm{Bord}_3^{\mathrm{String}}$ is known to be $\mathbb{Z}/24\mathbb{Z}$. Using Waldorf's notion of a geometric string structure on a manifold, Bunke--Naumann and Redden have exhibited integral formulas involving the Chern-Weil form representative of the first Pontryagin class and the canonical 3-form of a geometric string structure that realize the isomorphism $\mathrm{Bord}_3^{\mathrm{String}} \to \mathbb{Z}/24\mathbb{Z}$. We will show how these formulas naturally emerge when one considers certain natural $\mathrm{U}(1)$-valued and $\mathbb{R}$-valued 3d TQFT associated with the classifying stacks of Spin bundles with connection and of String bundles with geometric structure, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源