论文标题
部分可观测时空混沌系统的无模型预测
Im2Oil: Stroke-Based Oil Painting Rendering with Linearly Controllable Fineness Via Adaptive Sampling
论文作者
论文摘要
本文提出了一种基于中风的新型渲染方法(SBR)方法,该方法将图像转化为生动的油画。以前的SBR技术通常将油画问题作为像素近似。与这种技术路线不同,我们将油漆的创造视为一种自适应抽样问题。首先,我们根据输入图像的纹理复杂性计算概率密度图。然后,我们使用Voronoi算法将一组像素作为中风锚进行采样。接下来,我们在每个锚点上搜索并生成单独的石油冲程。最后,我们将所有笔触都放在画布上以获取油画。通过调整高参数最大抽样概率,我们可以以线性方式控制油画的细度。与现有最先进的油画技术的比较表明,我们的结果具有更高的保真度和更现实的质感。用户意见测试表明,与其他方法的结果相比,人们对我们的油画的行为更加偏爱。更有趣的结果和代码在https://github.com/tzysjtu/im2oil中。
This paper proposes a novel stroke-based rendering (SBR) method that translates images into vivid oil paintings. Previous SBR techniques usually formulate the oil painting problem as pixel-wise approximation. Different from this technique route, we treat oil painting creation as an adaptive sampling problem. Firstly, we compute a probability density map based on the texture complexity of the input image. Then we use the Voronoi algorithm to sample a set of pixels as the stroke anchors. Next, we search and generate an individual oil stroke at each anchor. Finally, we place all the strokes on the canvas to obtain the oil painting. By adjusting the hyper-parameter maximum sampling probability, we can control the oil painting fineness in a linear manner. Comparison with existing state-of-the-art oil painting techniques shows that our results have higher fidelity and more realistic textures. A user opinion test demonstrates that people behave more preference toward our oil paintings than the results of other methods. More interesting results and the code are in https://github.com/TZYSJTU/Im2Oil.