论文标题
使用拉曼放大器的基于机器学习的基于机器学习的光谱空间幂演化成型的实验验证
Experimental validation of machine-learning based spectral-spatial power evolution shaping using Raman amplifiers
论文作者
论文摘要
我们通过实验验证一个实时机器学习框架,能够控制拉曼放大器的泵功率值以在二维(2D)中塑造信号功率演变:频率和光纤距离。在我们的设置中,优化了四个一阶反向传输泵的功率值以实现所需的2D功率曲线。泵功率优化框架包括一个卷积神经网络(CNN),然后是差分进化(DE)技术,在线应用于放大器设置,以自动实现目标2D功率配置文件。可实现的2D配置文件的结果表明,该框架能够确保所获得的2D配置文件之间的最大最大绝对误差(MAE)(MAE)(<0.5 dB)。此外,在多目标设计方案中测试了该框架,其目标是在跨越结束时达到固定增益水平的2D配置文件,在整个光纤长度上共同具有最小的光谱游览。在这种情况下,实验结果断言,对于目标扁平增益水平的2D轮廓,当设置在泵功率值中不受物理上的限制时,DE获得的最大增益偏差小于1 dB。模拟结果还证明,有足够的泵功率可用,可以实现更高的目标增益水平的更好的增益偏差(小于0.6 dB)。
We experimentally validate a real-time machine learning framework, capable of controlling the pump power values of Raman amplifiers to shape the signal power evolution in two-dimensions (2D): frequency and fiber distance. In our setup, power values of four first-order counter-propagating pumps are optimized to achieve the desired 2D power profile. The pump power optimization framework includes a convolutional neural network (CNN) followed by differential evolution (DE) technique, applied online to the amplifier setup to automatically achieve the target 2D power profiles. The results on achievable 2D profiles show that the framework is able to guarantee very low maximum absolute error (MAE) (<0.5 dB) between the obtained and the target 2D profiles. Moreover, the framework is tested in a multi-objective design scenario where the goal is to achieve the 2D profiles with flat gain levels at the end of the span, jointly with minimum spectral excursion over the entire fiber length. In this case, the experimental results assert that for 2D profiles with the target flat gain levels, the DE obtains less than 1 dB maximum gain deviation, when the setup is not physically limited in the pump power values. The simulation results also prove that with enough pump power available, better gain deviation (less than 0.6 dB) for higher target gain levels is achievable.