论文标题
多任务图神经网络的聚合物信息学处
Polymer informatics at-scale with multitask graph neural networks
论文作者
论文摘要
基于人工智能的方法越来越有效地筛选聚合物的库,直至可用于实验询问的选择。目前采用的绝大多数用于聚合物筛选的方法都取决于从聚合物重复单元中提取的手工化学结构特征 - 作为聚合物库的繁重任务,该任务逐渐逐渐增长,逐渐随着时间的推移而增长。在这里,我们证明了聚合物重复单元的直接“机器学习”重要功能是一种便宜且可行的替代品,可以手工提取昂贵的功能。我们的方法 - 基于图形神经网络,多任务学习和其他先进的深度学习技术 - 相对于目前采用的手工制作的方法,将功能提取速度提高一到两个数量级,而无需损害各种聚合物属性预测任务的模型准确性。我们预计,我们的方法可以大规模解锁真正的大型聚合物库的筛选,它将在聚合物信息学领域中实现更复杂和大规模的筛选技术。
Artificial intelligence-based methods are becoming increasingly effective at screening libraries of polymers down to a selection that is manageable for experimental inquiry. The vast majority of presently adopted approaches for polymer screening rely on handcrafted chemostructural features extracted from polymer repeat units -- a burdensome task as polymer libraries, which approximate the polymer chemical search space, progressively grow over time. Here, we demonstrate that directly "machine-learning" important features from a polymer repeat unit is a cheap and viable alternative to extracting expensive features by hand. Our approach -- based on graph neural networks, multitask learning, and other advanced deep learning techniques -- speeds up feature extraction by one to two orders of magnitude relative to presently adopted handcrafted methods without compromising model accuracy for a variety of polymer property prediction tasks. We anticipate that our approach, which unlocks the screening of truly massive polymer libraries at scale, will enable more sophisticated and large scale screening technologies in the field of polymer informatics.