论文标题
循环量子重力动机的多霍顿旋转黑洞
Loop Quantum Gravity motivated multihorizon rotating black holes
论文作者
论文摘要
Schwarzschild黑洞的内部在环路量子重力(LQG)中具有半经典聚合,可提供迷人的单身常规黑洞时空。环路量子重力(LQG)中旋转黑洞模型的短缺极大地限制了测试LQG从观察值中的进展。以此为动机,从球形LQG黑洞作为种子度量标准开始,我们使用修订后的Newman-Janis算法构建旋转的空间,即LQG动机的旋转黑洞(LMRBH),该旋转黑洞(LMRBH)包括Kerr($ l = 0 $)黑色的黑色holles。我们发现,对于任何随机的$ l> 0 $,与Kerr Black Hole不同,一个极好的LMRBH是指具有角动量$ A> m $的黑洞。参数空间中的旋转度量描述了(1)带有事件的黑洞,(2)带有三个地平线的黑洞,(3)仅一个地平线或(4)没有地平线时空的黑洞。我们还讨论了LMRBH空间的地平线和全球结构及其对$ L/m $的依赖性,该$ l/m $在($ m,\; a,\; l $)参数空间中表现出丰富的时空结构。
With a semiclassical polymerization in the loop quantum gravity (LQG), the interior of Schwarzschild black holes provides a captivating single-horizon regular black hole spacetime. The shortage of rotating black hole models in loop quantum gravity (LQG) substantially restrains the progress of testing LQG from observations. Motivated by this, starting with a spherical LQG black hole as a seed metric, we construct a rotating spacetime using the revised Newman-Janis algorithm, namely, the LQG-motivated rotating black holes (LMRBH), which encompasses Kerr ($l=0$) black holes as an exceptional case. We discover that for any random $l>0$, unlike Kerr black hole, an extremal LMRBH refers to a black hole with angular momentum $a>M$. The rotating metric, in parameter space, describes (1) black holes with an event and Cauchy horizons, (2) black holes with three horizons, (3) black holes with only one horizon or (4) no horizon spacetime. We also discuss the horizon and global structure of the LMRBH spacetimes and its dependence on $l/M$ that exhibits rich spacetime structures in the ($M,\;a,\;l$) parameter space.