论文标题
部分可观测时空混沌系统的无模型预测
High aspect ratio arrays of Si nano-pillars using displacement Talbot lithography and gas-MacEtch
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Structuring Si in arrays of vertical high aspect ratio pillars, ranging from nanoscale to macroscale feature dimensions, is essential for producing functional interfaces for many applications. Arrays of silicon 3D nanostructures are needed to realize photonic and phononic crystals, waveguides, metalenses, X-ray wavefront sensors, detectors, microstructures and arrays of Si pillars are used as bio-interfaces in neural activity recording, cell culture, microfluidics, sensing and on-chip manipulation. Here, we present a new strategy for realizing arrays of protruding sharp Si nanopillars using displacement Talbot lithography combined with metal-assisted chemical etching (MacEtch) in gas phase. With the double exposure of a linear grating mask in orthogonal orientations and the lift-off technique, we realized a catalyst pattern of holes in a Pt thin film with a period of 1 μm and hole diameter in the range of 100-250 nm. MacEtch in gas phase by using vapor HF and oxygen from air allows to etch arrays of protruding Si nanopillars 200 nm-thick and aspect ratio in the range of 200 (pillar height/width) with an etching rate up to 1 μm/min. With the advantage of no stiction, no ion beam damage of the Si substrate, nanometric resolution and high fidelity of pattern transfer the method is an easy-to-scale-up processing that can support the fabrication of Si pillars arrays for many valuable applications both at micro and nano-scale.