论文标题

翻译,比例和旋转:跨模式对准符合RGB - 信号车辆检测

Translation, Scale and Rotation: Cross-Modal Alignment Meets RGB-Infrared Vehicle Detection

论文作者

Yuan, Maoxun, Wang, Yinyan, Wei, Xingxing

论文摘要

近年来,将多光谱数据集成在对象检测中,尤其是可见的和红外图像。由于可见的(RGB)和红外(IR)图像可以提供互补的信息来处理光变化,因此配对图像用于许多领域,例如多光谱的行人检测,RGB-IR人群计数和RGB-IR显着对象检测。与天然RGB-IR图像相比,我们发现空中RGB-IR图像中的检测遭受跨模式弱的未对准问题,这些问题在同一物体的位置,大小和角度偏差中表现出来。在本文中,我们主要解决了空中RGB-IR图像中跨模式弱未对准的挑战。具体而言,我们首先解释和分析了弱未对准问题的原因。然后,我们提出了一个翻译尺度的反向对齐(TSRA)模块,以通过校准这两种方式的特征图来解决问题。该模块通过对齐过程预测了两个模态对象之间的偏差,并利用模态选择(MS)策略来提高对齐的性能。最后,基于TSRA模块的两流特征比对检测器(TSFADET)是为空中图像中的RGB-IR对象检测构建的。通过对公共无人机数据集进行的全面实验,我们验证我们的方法是否降低了交叉模式错位的效果并实现了可靠的检测结果。

Integrating multispectral data in object detection, especially visible and infrared images, has received great attention in recent years. Since visible (RGB) and infrared (IR) images can provide complementary information to handle light variations, the paired images are used in many fields, such as multispectral pedestrian detection, RGB-IR crowd counting and RGB-IR salient object detection. Compared with natural RGB-IR images, we find detection in aerial RGB-IR images suffers from cross-modal weakly misalignment problems, which are manifested in the position, size and angle deviations of the same object. In this paper, we mainly address the challenge of cross-modal weakly misalignment in aerial RGB-IR images. Specifically, we firstly explain and analyze the cause of the weakly misalignment problem. Then, we propose a Translation-Scale-Rotation Alignment (TSRA) module to address the problem by calibrating the feature maps from these two modalities. The module predicts the deviation between two modality objects through an alignment process and utilizes Modality-Selection (MS) strategy to improve the performance of alignment. Finally, a two-stream feature alignment detector (TSFADet) based on the TSRA module is constructed for RGB-IR object detection in aerial images. With comprehensive experiments on the public DroneVehicle datasets, we verify that our method reduces the effect of the cross-modal misalignment and achieve robust detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源