论文标题

使用体素杂种残留MLP-CNN模型对3D MR图像进行降级,以提高小病变诊断置信度

Denoising of 3D MR images using a voxel-wise hybrid residual MLP-CNN model to improve small lesion diagnostic confidence

论文作者

Yang, Haibo, Zhang, Shengjie, Han, Xiaoyang, Zhao, Botao, Ren, Yan, Sheng, Yaru, Zhang, Xiao-Yong

论文摘要

磁共振成像(MRI)图像中的小病变对于多种疾病的临床诊断至关重要。但是,MRI质量很容易被各种噪声降解,这可能会极大地影响小病变诊断的准确性。尽管已经提出了一些用于降级MR图像的方法,但缺乏提高特定任务的denoising方法,用于提高小病变的诊断信心。在这项工作中,我们提出了一个通过体素的杂种残留MLP-CNN模型,以降低具有小病变的三维(3D)MR图像。我们结合了基本的深度学习体系结构MLP和CNN,以获得适当的固有偏见,以通过添加剩余连接来利用远距离信息来为MLP和CNN中的每个输出层整合在MLP和CNN中。我们在720 T2-Flair脑图像上评估了所提出的方法,其在不同的噪声水平下具有较小的病变。结果表明,与最先进的方法相比,在定量和视觉评估中,我们的方法在测试数据集上具有优势。此外,两位经验丰富的放射科医生同意,在中等和高噪声水平下,我们的方法在恢复小病变和整体图像质量方面优于其他方法。我们的方法的实现可在https://github.com/laowangbobo/Residual_mlp_cnn_mixer上获得。

Small lesions in magnetic resonance imaging (MRI) images are crucial for clinical diagnosis of many kinds of diseases. However, the MRI quality can be easily degraded by various noise, which can greatly affect the accuracy of diagnosis of small lesion. Although some methods for denoising MR images have been proposed, task-specific denoising methods for improving the diagnosis confidence of small lesions are lacking. In this work, we propose a voxel-wise hybrid residual MLP-CNN model to denoise three-dimensional (3D) MR images with small lesions. We combine basic deep learning architecture, MLP and CNN, to obtain an appropriate inherent bias for the image denoising and integrate each output layers in MLP and CNN by adding residual connections to leverage long-range information. We evaluate the proposed method on 720 T2-FLAIR brain images with small lesions at different noise levels. The results show the superiority of our method in both quantitative and visual evaluations on testing dataset compared to state-of-the-art methods. Moreover, two experienced radiologists agreed that at moderate and high noise levels, our method outperforms other methods in terms of recovery of small lesions and overall image denoising quality. The implementation of our method is available at https://github.com/laowangbobo/Residual_MLP_CNN_Mixer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源