论文标题

当戒指在刺穿光谱上f indentive时,参数理想的frobenius封闭

On the Frobenius closure of parameter ideals when the ring is F-injective on the punctured spectrum

论文作者

Huong, Duong Thi, Quy, Pham Hung

论文摘要

令$(r,\ frak m)$成为一个出色的广义Cohen-Macaulay本地尺寸$ D $,这是$ f $ importive the Punctruded Spectrum上的。令$ \ frak q $为$ r $的标准参数。本文的目的是证明$$ \ ell_r({\ frak q}^f/{\ frak q})\ leq \ sum \ sum \ limits_ {i = 0}^{d} \ binom {d} \ binom {d}如果$ \ frak q $包含在$ \ frak m $的足够大的功率中,我们有$$ {\ frak q}^f/{\ frak q} \ cong \ bigoplus_ {i = 0}^d(0}^d(0 m}(r)})^{\ binom {d} {i}}}。$$

Let $(R,\frak m)$ be an excellent generalized Cohen-Macaulay local ring of dimension $d$ that is $F$-injective on the punctured spectrum. Let $\frak q$ be a standard parameter ideal of $R$. The aim of the paper is to prove that $$\ell_R({\frak q}^F/{\frak q})\leq \sum\limits_{i=0}^{d}\binom{d}{i}\ell_R(0^F_{H^i_{\frak m}(R)}).$$ Moreover, if $\frak q$ is contained in a large enough power of $\frak m$, we have $${\frak q}^F/{\frak q} \cong \bigoplus_{i=0}^d (0^F_{H^i_{\frak m}(R)})^{\binom{d}{i}}.$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源