论文标题
量子力学方程的分散链
Dispersion chain of quantum mechanics equations
论文作者
论文摘要
基于弗拉索夫方程的分散链,本文考虑了高运动值的量子力学方程式的构建。提出的方法可以应用于带有辐射的经典和量子系统。许多定理以汉密尔顿操作员,拉格朗日功能,汉密尔顿 - 雅各比方程和麦克斯韦方程的扩展形式证明了许多定理。在某些较低维度的特殊情况下,量子力学的分散链被简化为相空间中的量子力学(Wigner函数)和de Broglie-Bohm«Pilot Wave»理论。分析了求解第二等级的Schrödinger方程(对于相空间)的一个示例,与Wigner函数相比,该方程提供了正分布密度函数。
Based on the dispersion chain of the Vlasov equations, the paper considers the construction of a new chain of equations of quantum mechanics of high kinematical values. The proposed approach can be applied to consideration of classical and quantum systems with radiation. A number of theorems are proved on the form of extensions of the Hamilton operators, Lagrange functions, Hamilton-Jacobi equations, and Maxwell equations to the case of a generalized phase space. In some special cases of lower dimensions, the dispersion chain of quantum mechanics is reduced to quantum mechanics in phase space (the Wigner function) and the de Broglie-Bohm «pilot wave» theory. An example of solving the Schrödinger equation of the second rank (for the phase space) is analyzed, which, in contrast to the Wigner function, gives a positive distribution density function.