论文标题

在$(6,4)$ - Brown,Erdős和Sós的问题上

On the $(6,4)$-problem of Brown, Erdős and Sós

论文作者

Glock, Stefan, Joos, Felix, Kim, Jaehoon, Kühn, Marcus, Lichev, Lyuben, Pikhurko, Oleg

论文摘要

令$ f^{(r)}(n; s,k)$为$ r $均匀的超图的最大边数,上面$ n $ n $顶点不包含带有$ k $ edges的子图的边缘,最多最多$ s $ s $ vertices。 1973年,Brown,Erdős和Sós推测$ \ lim_ {n \ to \ infty} n^{ - 2} f^{(3)}(n; k+2,k)$ k $都存在,并确认了$ k = 2 $。最近,格洛克(Glock)以$ k = 3 $表示了这一点。我们通过表明$ f^{(3)}(n; 6,4)= \ left(\ frac {7} {36} {36}+o(1)\ right)n^2 $ as $ n \ to \ infty $来解决下一个开放式案例,$ k = 4 $,$ k = 4 $。更笼统地,对于所有$ k \ in \ {3,4 \} $,$ r \ ge 3 $和$ t \ in [2,r-1] $,我们计算了极限$ \ lim_ {n \ to \ lim_ {n \ to \ infty} n^{ - t} n^{ - t} n^{ - t} f^{(r)(r)}(n;

Let $f^{(r)}(n;s,k)$ be the maximum number of edges of an $r$-uniform hypergraph on $n$ vertices not containing a subgraph with $k$ edges and at most $s$ vertices. In 1973, Brown, Erdős and Sós conjectured that the limit $$\lim_{n\to \infty} n^{-2} f^{(3)}(n;k+2,k)$$ exists for all $k$ and confirmed it for $k=2$. Recently, Glock showed this for $k=3$. We settle the next open case, $k=4$, by showing that $f^{(3)}(n;6,4)=\left(\frac{7}{36}+o(1)\right)n^2$ as $n\to\infty$. More generally, for all $k\in \{3,4\}$, $r\ge 3$ and $t\in [2,r-1]$, we compute the value of the limit $\lim_{n\to \infty} n^{-t}f^{(r)}(n;k(r-t)+t,k)$, which settles a problem of Shangguan and Tamo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源