论文标题

空间修剪的稀疏卷积可高效3D对象检测

Spatial Pruned Sparse Convolution for Efficient 3D Object Detection

论文作者

Liu, Jianhui, Chen, Yukang, Ye, Xiaoqing, Tian, Zhuotao, Tan, Xiao, Qi, Xiaojuan

论文摘要

3D场景由大量背景点主导,这对于主要需要集中在前景对象的检测任务中是多余的。在本文中,我们分析了现有的稀疏3D CNN的主要组成部分,发现3D CNN忽略了数据的冗余,并在下采样过程中进一步扩大了数据,这带来了大量额外的不必要的计算间开销。受到这一点的启发,我们提出了一个名为“空间修剪稀疏卷积”(SPS-CONV)的新型卷积操作员,其中包括两个变体,空间修剪的submanifold稀疏卷积(SPSS-CONV)和空间修剪的定期稀疏卷积(SPRS-CONV),这两个杂音(SPRS-CONV)都是基于动态确定的cribucial cricucial criccial Redund condence Redund credund cred的概念。我们验证规模可以作为确定摆脱基于学习方法的额外计算的关键领域的重要提示。提出的模块可以轻松地将其纳入现有的稀疏3D CNN中,而无需额外的架构修改。对Kitti,Waymo和Nuscenes数据集进行的广泛实验表明,我们的方法可以在不损害性能的情况下实现超过50%的GFLOPS。

3D scenes are dominated by a large number of background points, which is redundant for the detection task that mainly needs to focus on foreground objects. In this paper, we analyze major components of existing sparse 3D CNNs and find that 3D CNNs ignore the redundancy of data and further amplify it in the down-sampling process, which brings a huge amount of extra and unnecessary computational overhead. Inspired by this, we propose a new convolution operator named spatial pruned sparse convolution (SPS-Conv), which includes two variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial pruned regular sparse convolution (SPRS-Conv), both of which are based on the idea of dynamically determining crucial areas for redundancy reduction. We validate that the magnitude can serve as important cues to determine crucial areas which get rid of the extra computations of learning-based methods. The proposed modules can easily be incorporated into existing sparse 3D CNNs without extra architectural modifications. Extensive experiments on the KITTI, Waymo and nuScenes datasets demonstrate that our method can achieve more than 50% reduction in GFLOPs without compromising the performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源