论文标题

意外:局部空间表示学习,用于分层变压器,以进行有效的医学细分

UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation

论文作者

Yu, Xin, Yang, Qi, Zhou, Yinchi, Cai, Leon Y., Gao, Riqiang, Lee, Ho Hin, Li, Thomas, Bao, Shunxing, Xu, Zhoubing, Lasko, Thomas A., Abramson, Richard G., Zhang, Zizhao, Huo, Yuankai, Landman, Bennett A., Tang, Yucheng

论文摘要

能够学习更好的全球依赖性的基于变压器的模型最近在计算机视觉和医学图像分析中表现出了出色的表示能力。变形金刚将图像重新格式化为单独的斑块,并通过自我注意机制实现全球交流。但是,斑块之间的位置信息很难在这样的1D序列中保存,并且在处理3D医学图像分割的各种大小各种大小的各种大小的异质组织时,它的丢失可能会导致次优性能。此外,对于重型医学分割任务,例如预测大量组织类别或建模全球相互连接的组织结构,目前的方法对重型医疗分割任务不强大且有效。为了应对视觉变压器中嵌套的层次结构的启发,我们提出了一种新颖的3D医学图像分割方法(不超EST),采用简化且更快的转换变压器编码器设计,该设计通过层次汇总聚集在空间相邻的贴片序列之间实现本地通信。我们在多种挑战性数据集上广泛验证我们的方法,包括多种模态,解剖和多种组织类别,包括大脑中的133个结构,腹部14个器官,肾脏,连接的肾脏肿瘤和脑肿瘤的4个分层组件。我们表明,不可能始终达到最先进的性能并评估其普遍性和数据效率。尤其是,该模型通过一个网络中的133个组织类别完成了整个大脑分割任务,超过了先前的最新方法slant27与27个网络结合在一起。

Transformer-based models, capable of learning better global dependencies, have recently demonstrated exceptional representation learning capabilities in computer vision and medical image analysis. Transformer reformats the image into separate patches and realizes global communication via the self-attention mechanism. However, positional information between patches is hard to preserve in such 1D sequences, and loss of it can lead to sub-optimal performance when dealing with large amounts of heterogeneous tissues of various sizes in 3D medical image segmentation. Additionally, current methods are not robust and efficient for heavy-duty medical segmentation tasks such as predicting a large number of tissue classes or modeling globally inter-connected tissue structures. To address such challenges and inspired by the nested hierarchical structures in vision transformer, we proposed a novel 3D medical image segmentation method (UNesT), employing a simplified and faster-converging transformer encoder design that achieves local communication among spatially adjacent patch sequences by aggregating them hierarchically. We extensively validate our method on multiple challenging datasets, consisting of multiple modalities, anatomies, and a wide range of tissue classes, including 133 structures in the brain, 14 organs in the abdomen, 4 hierarchical components in the kidneys, inter-connected kidney tumors and brain tumors. We show that UNesT consistently achieves state-of-the-art performance and evaluate its generalizability and data efficiency. Particularly, the model achieves whole brain segmentation task complete ROI with 133 tissue classes in a single network, outperforming prior state-of-the-art method SLANT27 ensembled with 27 networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源