论文标题

探索参数在变异量子算法中的作用

Exploring the role of parameters in variational quantum algorithms

论文作者

Anand, Abhinav, Alperin-Lea, Sumner, Choquette, Alexandre, Aspuru-Guzik, Alán

论文摘要

在这项工作中,我们引入了一种量子对照启发的方法,用于使用与单个层的Hermitian发电机相关的动态谎言代数的等级来表征变化量子电路。用于计算物理系统基础能量的变异算法中的基于层的体系结构被视为该探索的重点。即使使用大量参数可显着低于生成器中的单独术语数量,即使在谎言等级,计算能量的准确性和通过给定的电路架构达到目标状态的必要深度之间,可以找到有希望的连接。随着通过迭代过程计算动态谎言等级的成本随着电路中的量子数的数量而成倍增长,因此值得迅速的近似值。在计算的前几个迭代中,动态谎言排名的增加是可行的(下限)代理,用于完整计算,平衡准确性和计算费用。因此,我们提出了动态谎言等级,并将其作为各种算法中层结构量子电路的有用设计度量。

In this work, we introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra associated with the hermitian generator(s) of the individual layers. Layer-based architectures in variational algorithms for the calculation of ground-state energies of physical systems are taken as the focus of this exploration. A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture, even when using a lot of parameters which is appreciably below the number of separate terms in the generators. As the cost of calculating the dynamical Lie rank via an iterative process grows exponentially with the number of qubits in the circuit and therefore becomes prohibitive quickly, reliable approximations thereto are desirable. The rapidity of the increase of the dynamical Lie rank in the first few iterations of the calculation is found to be a viable (lower bound) proxy for the full calculation, balancing accuracy and computational expense. We, therefore, propose the dynamical Lie rank and proxies thereof as a useful design metric for layer-structured quantum circuits in variational algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源