论文标题

室内集合发生器:通过生成建模无限的高质量miR数据

The Chamber Ensemble Generator: Limitless High-Quality MIR Data via Generative Modeling

论文作者

Wu, Yusong, Gardner, Josh, Manilow, Ethan, Simon, Ian, Hawthorne, Curtis, Engel, Jesse

论文摘要

数据是现代机器学习系统的命脉,包括音乐信息检索中的命脉(MIR)。但是,MIR长期以来一直被小型数据集和不可靠的标签所困扰。在这项工作中,我们建议使用生成建模打破这种瓶颈。 By pipelining a generative model of notes (Coconet trained on Bach Chorales) with a structured synthesis model of chamber ensembles (MIDI-DDSP trained on URMP), we demonstrate a system capable of producing unlimited amounts of realistic chorale music with rich annotations including mixes, stems, MIDI, note-level performance attributes (staccato, vibrato, etc.), and even fine-grained synthesis参数(音高,振幅等)。我们称此系统为室内集合发生器(CEG),并使用它来生成来自四个不同腔室合奏(cocochorales)的大型合唱。我们证明了使用我们的方法生成的数据改善了音乐转录和源分离的最新模型,并且我们将系统和数据集释放为Mir社区未来工作的开源基础。

Data is the lifeblood of modern machine learning systems, including for those in Music Information Retrieval (MIR). However, MIR has long been mired by small datasets and unreliable labels. In this work, we propose to break this bottleneck using generative modeling. By pipelining a generative model of notes (Coconet trained on Bach Chorales) with a structured synthesis model of chamber ensembles (MIDI-DDSP trained on URMP), we demonstrate a system capable of producing unlimited amounts of realistic chorale music with rich annotations including mixes, stems, MIDI, note-level performance attributes (staccato, vibrato, etc.), and even fine-grained synthesis parameters (pitch, amplitude, etc.). We call this system the Chamber Ensemble Generator (CEG), and use it to generate a large dataset of chorales from four different chamber ensembles (CocoChorales). We demonstrate that data generated using our approach improves state-of-the-art models for music transcription and source separation, and we release both the system and the dataset as an open-source foundation for future work in the MIR community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源