论文标题

拓扑,poset和有限的难题

Topologies, Posets and Finite Quandles

论文作者

Elhamdadi, Mohamed, Gona, Tushar, Lahrani, Hitakshi

论文摘要

Alexandroff空间是一个拓扑空间,在该空间中,开放式设置的每个交叉点都打开。 AlexandRoff $ T_0 $空间与部分有序集(POSETS)之间有一对一的对应关系。我们调查了有限问题的Alexandroff $ T_0 $ TOPOGOLIES。我们证明,当且仅当Quandle具有多个轨道时,在有限的Quandle上有一个非平凡的拓扑结构。此外,我们表明,具有$ n $ orbits的Quandles上的正确连续posets为$ n $ - 分支机构。我们还发现,对于偶尔的二面地块,所有可能的拓扑的数量使正确的乘法连续。最多提供了五个基础性问题的一些明确计算。

An Alexandroff space is a topological space in which every intersection of open sets is open. There is one to one correspondence between Alexandroff $T_0$-spaces and partially ordered sets (posets). We investigate Alexandroff $T_0$-topologies on finite quandles. We prove that there is a non-trivial topology on a finite quandle making right multiplications continuous functions if and only if the quandle has more than one orbit. Furthermore, we show that right continuous posets on quandles with $n$ orbits are $n$-partite. We also find, for the even dihedral quandles, the number of all possible topologies making the right multiplications continuous. Some explicit computations for quandles of cardinality up to five are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源