论文标题

CG中误差规范的高斯 - 拉达上限的行为

The behaviour of the Gauss-Radau upper bound of the error norm in CG

论文作者

Meurant, Gérard, Tichý, Petr

论文摘要

考虑使用共轭梯度(CG)方法的真实对称正定矩阵$ a $求解线性代数方程的系统的问题。为了在适当的时刻停止算法,监视近似解决方案的质量很重要。测量近似解决方案质量的最相关数量之一是错误的$ norm。但是,可以估算此数量。在本文中,我们基于将CG视为近似某个Riemann-Stieltjes积分的过程,讨论和分析了误差$ norm上的高斯 - 拉达上限的行为。该上限取决于规定的低估$μ$与$ a $的最小特征值。我们专注于在计算过程中观察到的现象,表明在后来的CG迭代中,上限失去了其准确性,并且几乎独立于$μ$。我们构建了一个模型问题,用于证明和研究$μ$依赖性的上限的行为,并开发了有助于理解这种行为的公式。我们表明,上述现象与最小的丽思价值与$ a $的最小特征值的融合密切相关。当最小的Ritz值比规定低估的$μ$更好的近似值时,就会发生这种情况。我们还建议一种自适应策略,以提高以前迭代中上限的准确性。

Consider the problem of solving systems of linear algebraic equations $Ax=b$ with a real symmetric positive definite matrix $A$ using the conjugate gradient (CG) method. To stop the algorithm at the appropriate moment, it is important to monitor the quality of the approximate solution. One of the most relevant quantities for measuring the quality of the approximate solution is the $A$-norm of the error. This quantity cannot be easily computed, however, it can be estimated. In this paper we discuss and analyze the behaviour of the Gauss-Radau upper bound on the $A$-norm of the error, based on viewing CG as a procedure for approximating a certain Riemann-Stieltjes integral. This upper bound depends on a prescribed underestimate $μ$ to the smallest eigenvalue of $A$. We concentrate on explaining a phenomenon observed during computations showing that, in later CG iterations, the upper bound loses its accuracy, and is almost independent of $μ$. We construct a model problem that is used to demonstrate and study the behaviour of the upper bound in dependence of $μ$, and developed formulas that are helpful in understanding this behavior. We show that the above mentioned phenomenon is closely related to the convergence of the smallest Ritz value to the smallest eigenvalue of $A$. It occurs when the smallest Ritz value is a better approximation to the smallest eigenvalue than the prescribed underestimate $μ$. We also suggest an adaptive strategy for improving the accuracy of the upper bounds in the previous iterations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源