论文标题
编译:用于中国复杂性可控定义生成的基准数据集
COMPILING: A Benchmark Dataset for Chinese Complexity Controllable Definition Generation
论文作者
论文摘要
定义生成任务旨在自动在特定上下文中生成一个单词的定义。但是,由于缺乏针对不同复杂性的数据集,模型产生的定义往往会保持相同的复杂性水平。本文提出了为具有可控复杂性级别的单词生成定义的新任务。相应地,我们介绍了编译,一个数据集给出了有关中国定义的详细信息,并且每个定义的复杂性级别都标记为标签。编译数据集包括74,303个单词和106,882个定义。据我们所知,它是中国定义生成任务的最大数据集。我们选择各种代表性生成方法作为此任务的基准和进行评估,这表明我们的数据集在协助模型生成不同的复杂性级别定义方面发挥了出色的作用。我们认为,编译数据集将使复杂性可控定义生成的进一步研究受益。
The definition generation task aims to generate a word's definition within a specific context automatically. However, owing to the lack of datasets for different complexities, the definitions produced by models tend to keep the same complexity level. This paper proposes a novel task of generating definitions for a word with controllable complexity levels. Correspondingly, we introduce COMPILING, a dataset given detailed information about Chinese definitions, and each definition is labeled with its complexity levels. The COMPILING dataset includes 74,303 words and 106,882 definitions. To the best of our knowledge, it is the largest dataset of the Chinese definition generation task. We select various representative generation methods as baselines for this task and conduct evaluations, which illustrates that our dataset plays an outstanding role in assisting models in generating different complexity-level definitions. We believe that the COMPILING dataset will benefit further research in complexity controllable definition generation.