论文标题

平面各向同性$ L_P $ DUAL MINKOWSKI问题的解决方案分类

Classification of solutions for the planar isotropic $L_p$ dual Minkowski problem

论文作者

Li, Haizhong, Wan, Yao

论文摘要

本·安德鲁斯(Ben Andrews)在他美丽的论文[1]中获得了平面各向同性$ L_P $ Minkowski问题的完整分类。在本文中,通过概括本·安德鲁斯的结果,我们获得了平面各向同性$ l_p $ dual minkowski问题的完整分类,也就是说,对于任何$ p,q \ in \ mathbb {r} $,我们获得了以下等式的解决方案的完整分类: u^{1-p}(u_θ^2+u^2)^{\ frac {q-2} {2}}}}}(u_ {θθ}+u)= 1 \ quad \ text \ text {on} \ \ \ \ \ \ \ \ \ m马理{s}^1。 \ end {方程*}为了建立分类,我们将溶液的颂歌转换为积分,并研究其渐近行为,二元性和单调性。

In his beautiful paper [1], Ben Andrews obtained the complete classification of the solutions of the planar isotropic $L_p$ Minkowski problem. In this paper, by generalizing Ben Andrews's result we obtain the complete classification of the solutions of the planar isotropic $L_p$ dual Minkowski problem, that is, for any $p,q\in\mathbb{R}$ we obtain the complete classification of the solutions of the following equation: \begin{equation*} u^{1-p}(u_θ^2+u^2)^{\frac{q-2}{2}}(u_{θθ}+u)=1\quad\text{on}\ \mathbb{S}^1. \end{equation*} To establish the classification, we convert the ODE for the solution into an integral and study its asymptotic behavior, duality and monotonicity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源