论文标题
原始GNSS与IMU和LIDAR接触的因子图融合,用于精确的机器人本地化,而无需基站
Factor Graph Fusion of Raw GNSS Sensing with IMU and Lidar for Precise Robot Localization without a Base Station
论文作者
论文摘要
准确的本地化是机器人导航系统的核心组成部分。为此,全球导航卫星系统(GNSS)可以在户外提供绝对的测量,因此消除了长期漂移。但是,将GNSS数据与其他传感器数据融合并不是一件容易的事,尤其是当机器人在具有和没有天空视图的区域之间移动时。我们提出了一种可靠的方法,该方法将原始GNSS接收器数据与惯性测量以及可选的LIDAR观测值紧密地融合在一起,以进行精确且流畅的移动机器人定位。提出了具有两种类型的GNSS因子的因子图。首先,基于伪龙的因素,该因素允许地球上的全球定位。其次,基于载体阶段的因素,该因素可以实现高度准确的相对定位,这在对其他感应方式受到挑战时很有用。与传统的差异GNS不同,这种方法不需要与基站的连接。在公共城市驾驶数据集上,我们的方法达到的准确性可与最先进的算法相当,该算法将视觉惯性探针与GNSS数据融合在一起 - 尽管我们的方法不使用相机,但仅使用了惯性和GNSS数据。我们还使用来自汽车的数据以及在森林(例如森林)的环境中移动的四倍的机器人,证明了方法的鲁棒性。全球地球框架的准确性仍然为1-2 m,而估计的轨迹不连续且平滑。我们还展示了如何紧密整合LiDAR测量值。我们认为,这是第一个在因子图中与LiDAR融合原始GNSS观测值(而不是修复)的系统。
Accurate localization is a core component of a robot's navigation system. To this end, global navigation satellite systems (GNSS) can provide absolute measurements outdoors and, therefore, eliminate long-term drift. However, fusing GNSS data with other sensor data is not trivial, especially when a robot moves between areas with and without sky view. We propose a robust approach that tightly fuses raw GNSS receiver data with inertial measurements and, optionally, lidar observations for precise and smooth mobile robot localization. A factor graph with two types of GNSS factors is proposed. First, factors based on pseudoranges, which allow for global localization on Earth. Second, factors based on carrier phases, which enable highly accurate relative localization, which is useful when other sensing modalities are challenged. Unlike traditional differential GNSS, this approach does not require a connection to a base station. On a public urban driving dataset, our approach achieves accuracy comparable to a state-of-the-art algorithm that fuses visual inertial odometry with GNSS data -- despite our approach not using the camera, just inertial and GNSS data. We also demonstrate the robustness of our approach using data from a car and a quadruped robot moving in environments with little sky visibility, such as a forest. The accuracy in the global Earth frame is still 1-2 m, while the estimated trajectories are discontinuity-free and smooth. We also show how lidar measurements can be tightly integrated. We believe this is the first system that fuses raw GNSS observations (as opposed to fixes) with lidar in a factor graph.