论文标题

使用高斯流程的最佳停止

Optimal Stopping with Gaussian Processes

论文作者

Dwarakanath, Kshama, Dervovic, Danial, Tavallali, Peyman, Vyetrenko, Svitlana S, Balch, Tucker

论文摘要

我们提出了一组新型的基于高斯流程的算法,用于快速近似于时间序列的最佳时间,并在金融市场上使用特定的应用。我们表明,财务时间序列通常表现出的结构特性(例如,含义重复变动的趋势)允许使用高斯和深层高斯工艺模型,这使我们能够分析地评估最佳停止价值函数和策略。我们还通过通过最佳停止分析传播价格模型来量化价值函数的不确定性。我们将提出的方法与基于抽样的方法以及基于深度学习的基准进行比较和对比,该方法目前被认为是文献中最新的。我们表明,我们的算法家族在三个历史悠久的时间序列数据集上的表现优于基准,其中包括日内和结束股票的股票价格以及美国每日美国国债的收益率曲线。

We propose a novel group of Gaussian Process based algorithms for fast approximate optimal stopping of time series with specific applications to financial markets. We show that structural properties commonly exhibited by financial time series (e.g., the tendency to mean-revert) allow the use of Gaussian and Deep Gaussian Process models that further enable us to analytically evaluate optimal stopping value functions and policies. We additionally quantify uncertainty in the value function by propagating the price model through the optimal stopping analysis. We compare and contrast our proposed methods against a sampling-based method, as well as a deep learning based benchmark that is currently considered the state-of-the-art in the literature. We show that our family of algorithms outperforms benchmarks on three historical time series datasets that include intra-day and end-of-day equity stock prices as well as the daily US treasury yield curve rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源