论文标题
HINODE/SOT-SP和SDO/HMI的大规模空间交叉校准
Large-Scale Spatial Cross-Calibration of Hinode/SOT-SP and SDO/HMI
论文作者
论文摘要
我们研究了HINODE/SOT-SP和SDO/HMI仪器元数据的交叉校准,特别是缩放和指向信息的对应关系。这些数据集的准确校准给出了Instrument研究和基于学习的磁力图系统所需的对应关系,并且是物理上敏感的光电磁场向量所必需的。我们通过在每种仪器管道中图像之间的对应关系上稳健地拟合几何模型来解决问题。该技术在计算机视觉中很常见,但是使用扫描缝隙光谱仪(如HINODE/SOT-SP)时需要几个关键细节。我们将此技术应用于跨越Hinode任务的数据。我们的结果表明对已发布的2级Hinode/SOT-SP数据进行更正。首先,对大约2700次扫描的分析表明,Hinode/SOT-SP 2级数据中报告的像素大小不正确约1%。其次,对超过12,000次扫描的分析表明,数十个具有强大偏见的弧秒通常是不正确的。这些校正的回归表明,热效应在其任务上引起了HINODE/SOT-SP指向数据的世俗和循环漂移。我们提供两种解决方案。首先,通过我们的过程与SDO/HMI数据直接共对准可以改善许多Hinode/SOT-SP扫描的比对。其次,由于指向误差是可预测的,因此简单的事后校正可以大大改善指向。最后,我们通过说明了这种更新的校准对研究和解释所需的派生物理数据产品的影响。除其他事项外,我们的结果表明,指向误差会导致径向电流密度估计的半球偏差。
We investigate the cross-calibration of the Hinode/SOT-SP and SDO/HMI instrument meta-data, specifically the correspondence of the scaling and pointing information. Accurate calibration of these datasets gives the correspondence needed by inter-instrument studies and learning-based magnetogram systems, and is required for physically-meaningful photospheric magnetic field vectors. We approach the problem by robustly fitting geometric models on correspondences between images from each instrument's pipeline. This technique is common in computer vision, but several critical details are required when using scanning slit spectrograph data like Hinode/SOT-SP. We apply this technique to data spanning a decade of the Hinode mission. Our results suggest corrections to the published Level 2 Hinode/SOT-SP data. First, an analysis on approximately 2,700 scans suggests that the reported pixel size in Hinode/SOT-SP Level 2 data is incorrect by around 1%. Second, analysis of over 12,000 scans show that the pointing information is often incorrect by dozens of arcseconds with a strong bias. Regression of these corrections indicates that thermal effects have caused secular and cyclic drift in Hinode/SOT-SP pointing data over its mission. We offer two solutions. First, direct co-alignment with SDO/HMI data via our procedure can improve alignments for many Hinode/SOT-SP scans. Second, since the pointing errors are predictable, simple post-hoc corrections can substantially improve the pointing. We conclude by illustrating the impact of this updated calibration on derived physical data products needed for research and interpretation. Among other things, our results suggest that the pointing errors induce a hemispheric bias in estimates of radial current density.