论文标题
减少衍生堆栈的稳定器和对干旱理论不变性的应用
Stabilizer Reduction for Derived Stacks and Applications to Sheaf-Theoretic Invariants
论文作者
论文摘要
我们为任何派生的$ 1 $ -1 $ -Algebraic stack $ x $上的$ \ algebraic stack $ x $ bon $ \ mathbb {c} $作为一系列衍生的柯万爆炸的顺序,在包括良好的Moduli Moduli Smack for Splactical Truncation $ x _________________________的 我们的构建具有几个理想的特征:它自然地将基尔万的经典部分降低算法概括到衍生的代数几何形状的背景下,保留了准平滑度,并且是Kiem,Kiem,Li和第三作者的内在稳定器减少构建的衍生稳定器减少。此外,如果$ x $是$( - 1)$ - 转移的符号符号,我们表明,$ \ widetilde {x} _ {x} _ {\ mathrm {cl}} $的半完美而几乎完美的阻塞理论以及同一作者构建的$ wideTILD $ wide的纽带,是由同一作者构建的,\ \作为推杆,我们为表面上可半固定的滑轮的模量堆栈定义了虚拟类别,对Calabi-yau三倍的普通化唐纳森·托马斯(Donaldson-Thomas)不变,并定义了新的广义VAFA vafa-whottents的全面视角,并通过kirwan birwan bublups来表面进行表面。
We construct a canonical stabilizer reduction $\widetilde{X}$ for any derived $1$-algebraic stack $X$ over $\mathbb{C}$ as a sequence of derived Kirwan blow-ups, under mild natural conditions that include the existence of a good moduli space for the classical truncation $X_{\mathrm{cl}}$. Our construction has several desired features: it naturally generalizes Kirwan's classical partial desingularization algorithm to the context of derived algebraic geometry, preserves quasi-smoothness, and is a derived enhancement of the intrinsic stabilizer reduction constructed by Kiem, Li and the third author. Moreover, if $X$ is $(-1)$-shifted symplectic, we show that the semi-perfect and almost perfect obstruction theory of $\widetilde{X}_{\mathrm{cl}}$ and the associated virtual fundamental cycle and virtual structure sheaf, constructed by the same authors, are naturally induced by $\widetilde{X}$ and its derived tangent complex. As corollaries, we define virtual classes for moduli stacks of semistable sheaves on surfaces, give a fully derived perspective on generalized Donaldson-Thomas invariants of Calabi-Yau threefolds and define new generalized Vafa-Witten invariants for surfaces via Kirwan blow-ups.