论文标题
通过基于卫星的纠缠光子来源的全球时间分布
Global Time Distribution via Satellite-Based Sources of Entangled Photons
论文作者
论文摘要
我们提出了一种基于卫星的方案,以使用量子资源在整个全球范围内执行时钟同步。我们将其称为量子时钟同步(QCS)网络。通过详细的数值模拟,我们评估了该计划的近期实施的可行性和能力。我们认为只有配备适中资源的纳米卫星的一个小星座。其中包括量子设备,例如自发参数降低转换(SPDC)源,雪崩光tectectors(APDS)以及中等稳定的板载时钟,例如芯片刻度原子钟(CSACS)。在我们的仿真中,已经选择了描述硬件的各种性能参数,以使它们已经可以在市售,或者仅需要中等进步。我们得出的结论是,通过这样的方案建立了一个全球基于地面的时钟网络,将其同步到次纳秒级(最多几秒钟)的精确度是可行的。这样的QCS卫星星座将构成未来量子网络的基础架构,能够充当全球可访问的纠缠资源。同时,我们的时钟同步协议提供了许多量子网络协议所需的子纳秒级同步,因此可以看作是在为其他目的设计的空间域中为量子技术添加了额外的效用。
We propose a satellite-based scheme to perform clock synchronization between ground stations spread across the globe using quantum resources. We refer to this as a quantum clock synchronization (QCS) network. Through detailed numerical simulations, we assess the feasibility and capabilities of a near-term implementation of this scheme. We consider a small constellation of nanosatellites equipped only with modest resources. These include quantum devices such as spontaneous parametric down conversion (SPDC) sources, avalanche photo-detectors (APDs), and moderately stable on-board clocks such as chip scale atomic clocks (CSACs). In our simulations, the various performance parameters describing the hardware have been chosen such that they are either already commercially available, or require only moderate advances. We conclude that with such a scheme establishing a global network of ground based clocks synchronized to sub-nanosecond level (up to a few picoseconds) of precision, would be feasible. Such QCS satellite constellations would form the infrastructure for a future quantum network, able to serve as a globally accessible entanglement resource. At the same time, our clock synchronization protocol, provides the sub-nanosecond level synchronization required for many quantum networking protocols, and thus, can be seen as adding an extra layer of utility to quantum technologies in the space domain designed for other purposes.