论文标题
AICCA:AI驱动的云分类地图集
AICCA: AI-driven Cloud Classification Atlas
论文作者
论文摘要
云在地球的能源预算中起着重要的作用,其行为是未来气候预测中最大的不确定性之一。卫星观察应有助于理解云的反应,但是到目前为止,数十年来的多光谱云图像的数十年和之前只需要有限的使用。这项研究通过使用卷积神经网络通过一种新型的自动化,无监督的云分类技术将卫星云观测值分组来降低卫星云观测值的维度。我们的技术将旋转不变的自动编码器与层次集聚聚类结合在一起,以生成云簇,以捕获云纹理之间有意义的区别,仅使用原始的多光谱图像作为输入。因此,定义云类的定义而不依赖于位置,时间/季节,派生的物理特性或预先指定的类定义。我们使用这种方法来生成独特的新云数据集,即AI驱动的云分类地图集(AICCA),该数据集从NASA的Aqua和Terra仪器上的中等分辨率成像谱仪(MODIS)中散发出22年的海洋图像-800吨数据或800吨数据或19.9亿个patch patche catly cluct of 100 km x 100 km x 100 km(128 x 128 x 128 x 128 x 128 pixels)。我们表明,AICCA课程涉及采用空间信息的有意义的区别并导致不同的地理分布,例如捕获北美西海岸和南美西海岸的层状甲板。 AICCA以紧凑的形式在多光谱图像中传达信息,实现数据驱动的云组织模式的诊断,为数十年的时间尺度提供了云的进化,并通过促进核心数据访问来帮助使气候研究民主化。
Clouds play an important role in the Earth's energy budget and their behavior is one of the largest uncertainties in future climate projections. Satellite observations should help in understanding cloud responses, but decades and petabytes of multispectral cloud imagery have to date received only limited use. This study reduces the dimensionality of satellite cloud observations by grouping them via a novel automated, unsupervised cloud classification technique by using a convolutional neural network. Our technique combines a rotation-invariant autoencoder with hierarchical agglomerative clustering to generate cloud clusters that capture meaningful distinctions among cloud textures, using only raw multispectral imagery as input. Thus, cloud classes are defined without reliance on location, time/season, derived physical properties, or pre-designated class definitions. We use this approach to generate a unique new cloud dataset, the AI-driven cloud classification atlas (AICCA), which clusters 22 years of ocean images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua and Terra instruments - 800 TB of data or 198 million patches roughly 100 km x 100 km (128 x 128 pixels) - into 42 AI-generated cloud classes. We show that AICCA classes involve meaningful distinctions that employ spatial information and result in distinct geographic distributions, capturing, for example, stratocumulus decks along the West coasts of North and South America. AICCA delivers the information in multi-spectral images in a compact form, enables data-driven diagnosis of patterns of cloud organization, provides insight into cloud evolution on timescales of hours to decades, and helps democratize climate research by facilitating access to core data.