论文标题
批处理多壳构成预测
Batch Multivalid Conformal Prediction
论文作者
论文摘要
我们开发了快速的无分布共形预测算法,用于在批处理设置中获得可交换数据的多瓦化覆盖范围。通过两种方式,多估计覆盖范围的保证比边缘覆盖范围更强:(1)他们以团体成员身份为条件 - 也就是说,目标覆盖率$ 1-α$有条件地符合有限(潜在相交的)组的成员资格,该组在有限的(有限的)集团中均以$ \ MATHCAL $ \\ MATHCAL {g}的特征空间的区域为单位。 (2)他们以用于在给定示例上产生预测的阈值的阈值的值均匀。实际上,即使同时根据小组成员资格和门槛值进行条件,多估计覆盖范围也可以保证。 我们给出了两种算法:两者都将输入作为任意的不符合分数,并任意收集可能相交的组$ \ Mathcal {g} $,然后可以配备任意的黑盒预测指标,并配备预测集。我们的第一个算法(batchGCP)是分位数回归的直接扩展,需要仅解决单个凸的最小化问题,并产生一个估计器,该估计器在$ \ Mathcal {g} $中对每个组都有群体条件保证。我们的第二个算法(batchMVP)是迭代的,并提供了多千差联综合预测的全部保证:预测集在小组成员资格和非合规性阈值中有条件有效。我们在广泛的实验集中评估了两种算法的性能。代码复制我们所有实验
We develop fast distribution-free conformal prediction algorithms for obtaining multivalid coverage on exchangeable data in the batch setting. Multivalid coverage guarantees are stronger than marginal coverage guarantees in two ways: (1) They hold even conditional on group membership -- that is, the target coverage level $1-α$ holds conditionally on membership in each of an arbitrary (potentially intersecting) group in a finite collection $\mathcal{G}$ of regions in the feature space. (2) They hold even conditional on the value of the threshold used to produce the prediction set on a given example. In fact multivalid coverage guarantees hold even when conditioning on group membership and threshold value simultaneously. We give two algorithms: both take as input an arbitrary non-conformity score and an arbitrary collection of possibly intersecting groups $\mathcal{G}$, and then can equip arbitrary black-box predictors with prediction sets. Our first algorithm (BatchGCP) is a direct extension of quantile regression, needs to solve only a single convex minimization problem, and produces an estimator which has group-conditional guarantees for each group in $\mathcal{G}$. Our second algorithm (BatchMVP) is iterative, and gives the full guarantees of multivalid conformal prediction: prediction sets that are valid conditionally both on group membership and non-conformity threshold. We evaluate the performance of both of our algorithms in an extensive set of experiments. Code to replicate all of our experiments can be found at https://github.com/ProgBelarus/BatchMultivalidConformal