论文标题

强大的无监督多任务和在高斯混合模型上的转移学习

Robust Unsupervised Multi-task and Transfer Learning on Gaussian Mixture Models

论文作者

Tian, Ye, Weng, Haolei, Xia, Lucy, Feng, Yang

论文摘要

无监督的学习已被广​​泛用于许多实际应用中。高斯混合模型(GMM)是最简单,最重要的学习模型之一。在这项工作中,我们研究了GMM上的多任务学习问题,该问题旨在利用任务之间潜在的类似GMM参数结构,以获得与单任务学习相比的改进学习绩效。我们根据EM算法提出了一个多任务GMM学习程序,该过程有效地利用了相关任务之间的相似性,并且与任意分布中的较为异常任务相比具有鲁棒性。所提出的过程显示,在广泛的方案中,对于参数估计误差和多余的群集群集误差的最小值收敛速率。此外,我们概括了解决GMM的转移学习问题的方法,在该问题中得出了类似的理论结果。此外,迭代无监督的多任务和转移学习方法可能会遇到初始化对准问题,并提出了两种对齐算法来解决该问题。最后,我们通过模拟和实际数据示例来证明我们方法的有效性。据我们所知,这是研究多任务和转移GMM的第一批工作,并具有理论保证。

Unsupervised learning has been widely used in many real-world applications. One of the simplest and most important unsupervised learning models is the Gaussian mixture model (GMM). In this work, we study the multi-task learning problem on GMMs, which aims to leverage potentially similar GMM parameter structures among tasks to obtain improved learning performance compared to single-task learning. We propose a multi-task GMM learning procedure based on the EM algorithm that effectively utilizes unknown similarities between related tasks and is robust against a fraction of outlier tasks from arbitrary distributions. The proposed procedure is shown to achieve the minimax optimal rate of convergence for both parameter estimation error and the excess mis-clustering error, in a wide range of regimes. Moreover, we generalize our approach to tackle the problem of transfer learning for GMMs, where similar theoretical results are derived. Additionally, iterative unsupervised multi-task and transfer learning methods may suffer from an initialization alignment problem, and two alignment algorithms are proposed to resolve the issue. Finally, we demonstrate the effectiveness of our methods through simulations and real data examples. To the best of our knowledge, this is the first work studying multi-task and transfer learning on GMMs with theoretical guarantees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源