论文标题

比较Qutrits and Quarts的铃铛对角线对的绑定纠缠

Comparing bound entanglement of bell diagonal pairs of qutrits and ququarts

论文作者

Popp, Christopher, Hiesmayr, Beatrix C.

论文摘要

我们将分类与贝尔对角线二分的词纠缠或可分离,具有阳性部分换位(PPT)及其在不同维度的特性。对于尺寸$ d \ geq 3 $,存在一种很难检测到的纠缠形式,因为这种纠缠状态不能用于纠缠蒸馏。到目前为止,尚无有效的解决方案可以区分绑定的纠缠与可分离状态。我们解决并比较此问题的命名性问题,以与特殊的代数和几何结构以及在不同维度的量子信息处理任务中的特殊代数和几何结构以及应用中的两分钟对角qudits家族。扩展了钟形的分析方法和数值方法和结果($ d = 3 $),我们成功地将代表性的贝尔对角线PPT状态的$ 75 \%$ $ d = 4 $分类。通过那些代表性国家,我们能够估算ppt木quarts中可分离和绑定的状态的体积($ d = 4 $)。我们发现,所有PPT状态的至少$ 75.7 \%$ $ 1.7 \%$绑定纠缠,售价为$ 22.6 \%$,尚不清楚它们是可分离还是绑定。比较绑定的纠缠状态及其检测器的结构,我们发现不同维度的检测能力有很大的差异,并将这些功能与Qutrits的欧几里得几何形状的差异($ d = 3 $)和Quarks($ d = 4 $)相关联。最后,使用对两个维度中可分离和结束的纠缠钟对角状态集的详细视觉分析,进行了定性观察,以更好地区分绑定的纠缠与可分离状态。

We compare the classification as entangled or separable of Bell diagonal bipartite qudits with positive partial transposition (PPT) and their properties for different dimensions. For dimension $d \geq 3$, a form of entanglement exists that is hard to detect and called bound entanglement due to the fact that such entangled states cannot be used for entanglement distillation. Up to this date, no efficient solution is known to differentiate bound entangled from separable states. We address and compare this problem named separability problem for a family of bipartite Bell diagonal qudits with special algebraic and geometric structures and applications in quantum information processing tasks in different dimensions. Extending analytical and numerical methods and results for Bell diagonal qutrits ($d=3$), we successfully classify more than $75\%$ of representative Bell diagonal PPT states for $d=4$. Via those representative states we are able to estimate the volumes of separable and bound entangled states among PPT ququarts ($d=4$). We find that at least $75.7\%$ of all PPT states are separable, $1.7\%$ bound entangled and for $22.6\%$ it remains unclear whether they are separable or bound entangled. Comparing the structure of bound entangled states and their detectors, we find considerable differences in the detection capabilities for different dimensions and relate those to differences of the Euclidean geometry for qutrits ($d=3$) and ququarts ($d=4$). Finally, using a detailed visual analysis of the set of separable and bound entangled Bell diagonal states in both dimensions, qualitative observations are made that allow to better distinguish bound entangled from separable states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源