论文标题
渐近周期点,分叉和分数差图中的混乱过渡
Asymptotically periodic points, bifurcations, and transition to chaos in fractional difference maps
论文作者
论文摘要
在本文中,我们得出分析表达式的方程系数,这些方程式允许计算分数差图中渐近周期点。这些方程式的数值解使我们能够为分数差异图绘制分叉图。基于数值计算的分叉点,我们猜想的是,在分数中,feigenbaum常数$δ$的值与常规地图相同,$δ= 4.669 ... $。
In this paper, we derive analytic expressions for coefficients of the equations that allow calculations of asymptotically periodic points in fractional difference maps. Numerical solution of these equations allows us to draw the bifurcation diagram for the fractional difference logistic map. Based on the numerically calculated bifurcation points, we make a conjecture that in fractional maps the value of the Feigenbaum constant $δ$ is the same as in regular maps, $δ=4.669...$.