论文标题

对微分流形的普遍推断

Generalized Fiducial Inference on Differentiable Manifolds

论文作者

Murph, Alexander C, Hannig, Jan, Williams, Jonathan P

论文摘要

我们介绍了一种新的方法来推断参数,该参数在嵌入欧几里得空间中的riemannian歧管中进行值。这种形式的参数空间在许多领域中无处不在,包括化学,物理,计算机图形和地质。这种新方法使用普遍的基准推断,在歧管上获得类似后部的分布,而无需知道将约束空间映射到无约束的欧几里得空间的参数化。提出的方法称为约束的广义基准分布(CGFD),是通过使用Riemannian几何形状的数学工具获得的。 CGFD的Bernstein-von Mises-type结果,该结果为如何提供了CGFD遗传的无约束广义基金分布的理想渐近性质量。为了证明CGFD的实际使用,我们提供了三个概念验证示例:来自多变量正常密度的数据的推断,该数据具有球体上的平均参数,线性logspline密度估计问题以及对AR(1)模型的重新构想的方法,所有这些方法通过模拟显示了所需的覆盖率。我们讨论了两个马尔可夫链蒙特卡洛算法,以探索这些约束参数空间,并将其适应CGFD。

We introduce a novel approach to inference on parameters that take values in a Riemannian manifold embedded in a Euclidean space. Parameter spaces of this form are ubiquitous across many fields, including chemistry, physics, computer graphics, and geology. This new approach uses generalized fiducial inference to obtain a posterior-like distribution on the manifold, without needing to know a parameterization that maps the constrained space to an unconstrained Euclidean space. The proposed methodology, called the constrained generalized fiducial distribution (CGFD), is obtained by using mathematical tools from Riemannian geometry. A Bernstein-von Mises-type result for the CGFD, which provides intuition for how the desirable asymptotic qualities of the unconstrained generalized fiducial distribution are inherited by the CGFD, is provided. To demonstrate the practical use of the CGFD, we provide three proof-of-concept examples: inference for data from a multivariate normal density with the mean parameters on a sphere, a linear logspline density estimation problem, and a reimagined approach to the AR(1) model, all of which exhibit desirable coverages via simulation. We discuss two Markov chain Monte Carlo algorithms for the exploration of these constrained parameter spaces and adapt them for the CGFD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源