论文标题

有条件语言模型的分布外检测和选择性生成

Out-of-Distribution Detection and Selective Generation for Conditional Language Models

论文作者

Ren, Jie, Luo, Jiaming, Zhao, Yao, Krishna, Kundan, Saleh, Mohammad, Lakshminarayanan, Balaji, Liu, Peter J.

论文摘要

机器学习算法通常在培训和测试时假设独立且相同分布的样本。大量工作表明,高性能的ML分类器可以显着降解并提供过度限制的,错误的分类预测,尤其是对于分布(OOD)输入的输入。有条件的语言模型(CLM)主要是对输出序列中的下一个令牌进行分类的主要训练,并且可能会在OOD输入上遭受更严重的降解,因为预测在许多步骤中进行了自动进行自动进行回归。此外,由于可以生成任意文本,因此潜在的低质量输出空间更大,并且重要的是要知道何时信任生成的输出。我们为CLM提供了一种高度准确且轻巧的OOD检测方法,并证明了其在抽象性摘要和翻译中的有效性。我们还展示了如何使用高质量输出的选择性生成(类似于选择性预测的分类预测)的共同和现实的分布偏移设置,同时自动弃用低质量的输出,从而使生成语言模型更安全地部署。

Machine learning algorithms typically assume independent and identically distributed samples in training and at test time. Much work has shown that high-performing ML classifiers can degrade significantly and provide overly-confident, wrong classification predictions, particularly for out-of-distribution (OOD) inputs. Conditional language models (CLMs) are predominantly trained to classify the next token in an output sequence, and may suffer even worse degradation on OOD inputs as the prediction is done auto-regressively over many steps. Furthermore, the space of potential low-quality outputs is larger as arbitrary text can be generated and it is important to know when to trust the generated output. We present a highly accurate and lightweight OOD detection method for CLMs, and demonstrate its effectiveness on abstractive summarization and translation. We also show how our method can be used under the common and realistic setting of distribution shift for selective generation (analogous to selective prediction for classification) of high-quality outputs, while automatically abstaining from low-quality ones, enabling safer deployment of generative language models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源