论文标题

机器学习阶段的活动阶段

Machine learning phases of active matter

论文作者

Xue, Tingting, Li, Xu, Chen, Xiaosong, Chen, Li, Han, Zhangang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent years have witnessed a growing interest in using machine learning to predict and identify phase transitions in various systems. Here we adopt convolutional neural networks (CNNs) to study the phase transitions of Vicsek model, solving the problem that traditional order parameters are insufficiently able to do. Within the large-scale simulations, there are four phases, and we confirm that all the phase transitions between two neighboring phases are first-order. We have successfully classified the phase by using CNNs with a high accuracy and identified the phase transition points, while traditional approaches using various order parameters fail to obtain. These results indicate that the great potential of machine learning approach in understanding the complexities in collective behaviors, and in related complex systems in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源