论文标题

在分层介质中弹性波方程的完美层层的稳定性分析中

On the stability analysis of perfectly matched layer for the elastic wave equation in layered media

论文作者

Duru, Kenneth, Kalyanaraman, Balaje, Wang, Siyang

论文摘要

在本文中,我们介绍了在两空间层层弹性介质中对完美匹配层(PML)的稳定性分析。使用正常模式分析,我们证明,PML耗散了双材料弹性固体平面界面处的所有接口波模式。我们的分析基于[Siam Journal在数值分析上提出的想法52(2014)2883-2904],并在半平面弹性固体到接口波(例如Stoneley Wave)上扩展了边界波(​​例如雷利波)的稳定性结果(例如瑞利波),该固体波(例如Stoneley Wave)将在平面界面的两个半plansic弹性下传播到PML中。两层和多层弹性固体中的数值实验证实了理论分析,并将结果推广到复杂的弹性介质。使用Marmousi模型的数值示例证明了PML的实用性以及我们用于地震学应用的数值方法。

In this paper, we present the stability analysis of the perfectly matched layer (PML) in two-space dimensional layered elastic media. Using normal mode analysis we prove that all interface wave modes present at a planar interface of bi-material elastic solids are dissipated by the PML. Our analysis builds upon the ideas presented in [SIAM Journal on Numerical Analysis 52 (2014) 2883-2904] and extends the stability results of boundary waves (such as Rayleigh waves) on a half-plane elastic solid to interface wave modes (such as Stoneley waves) transmitted into the PML at a planar interface separating two half-plane elastic solids. Numerical experiments in two-layer and multi-layer elastic solids corroborate the theoretical analysis, and generalise the results to complex elastic media. Numerical examples using the Marmousi model demonstrates the utility of the PML and our numerical method for seismological applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源