论文标题

盲目反应超噪声模糊图像序列

Blindly Deconvolving Super-noisy Blurry Image Sequences

论文作者

Kostrykin, Leonid, Harmeling, Stefan

论文摘要

图像模糊和图像噪声是成像伪像,在图像采集中本质上产生。在本文中,我们考虑了多框架盲解卷积(MFBD),其中图像模糊是通过不可观察的,不可替代的图像和未知过滤器的卷积来描述的,其目的是从其模糊和嘈杂的观测值中恢复不变的图像。我们提出了两种新方法的MFBD方法,与以前的工作相反,它们不需要估计未知过滤器。第一种方法基于可能性最大化,需要仔细初始化以应对损失函数的非跨性别性。第二种方法规定了这一要求,并说明如果观测值跨越的信号子空间具有足够大的尺寸,则可能是特定构造矩阵的特征向量。我们描述了一个预处理步骤,该步骤通过人为地产生其他观察结果来增加信号子空间的维度。我们还提出了特征向量方法的扩展,该方法通过估计未知过滤器的足迹来应对信号子空间的尺寸不足(这是过滤器大小的向量,整个图像序列只需要一个)。我们已经将特征向量方法应用于合成生成的图像序列,并与先前方法进行了定量比较,从而获得了强烈改进的结果。

Image blur and image noise are imaging artifacts intrinsically arising in image acquisition. In this paper, we consider multi-frame blind deconvolution (MFBD), where image blur is described by the convolution of an unobservable, undeteriorated image and an unknown filter, and the objective is to recover the undeteriorated image from a sequence of its blurry and noisy observations. We present two new methods for MFBD, which, in contrast to previous work, do not require the estimation of the unknown filters. The first method is based on likelihood maximization and requires careful initialization to cope with the non-convexity of the loss function. The second method circumvents this requirement and exploits that the solution of likelihood maximization emerges as an eigenvector of a specifically constructed matrix, if the signal subspace spanned by the observations has a sufficiently large dimension. We describe a pre-processing step, which increases the dimension of the signal subspace by artificially generating additional observations. We also propose an extension of the eigenvector method, which copes with insufficient dimensions of the signal subspace by estimating a footprint of the unknown filters (that is a vector of the size of the filters, only one is required for the whole image sequence). We have applied the eigenvector method to synthetically generated image sequences and performed a quantitative comparison with a previous method, obtaining strongly improved results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源