论文标题
基于强大的基于轨迹的几何结构恢复的密度估计:理论和应用
Robust Trajectory-based Density Estimation for Geometric Structure Recovery: Theory and Applications
论文作者
论文摘要
随着物联网的兴起,有效处理大数据的策略对于发现意义的见解至关重要。由互连设备组生成的时间序列数据集包含有价值的基础模式。最近的工作从时空数据集提取了模式,以帮助道路网络的产生,活动识别等。在这些应用中,基础几何重建的速度和准确性很重要。现有的方法(例如内核密度估计(KDE))已被使用,但通常在计算上很昂贵。我们建议修改边缘四分化者利用其有效的继承结构。我们的修改使用新颖的轨迹计数函数估算密度,该轨迹计数函数通过对局部扰动的不变性来提供数学保证。我们评估方法在提取潜在的几何形状和代表性子样本点方面的有效性。为了进行验证,我们将与KDE变体进行比较,以提取嘈杂的合成轨迹的基本形状,使形状过高。我们将从GPS痕迹的地图提取与当前方法进行比较。我们的方法可以显着改善运行时,同时更好地提取几何形状或至少相当地提取几何形状。我们还将活动识别数据集中的Maxmin子采样与Maxmin亚采样进行了比较,并找到了具有可比性能的显着的运行时改进。
With the rise of the Internet of Things, strategies for effectively processing big data are essential for discovering meaningul insights. The time series datasets produced by groups of interconnected devices contain valuable underlying patterns. Recent works have extracted patterns from spatio-temporal datasets to aid in road network generation, activity recognition, and others. The speed and accuracy of the underlying geometry reconstruction are important in these applications. Existing methods such as kernel density estimation (KDE) have been used but are often computationally expensive. We propose modifying edge quadtrees to utilize their effective heirarchical structure. Our modification estimates density using a novel trajectory count function which provides mathematical guarantees on the stability of the count by enforcing an invariance to local perturbations. We evaluate our method's effectiveness at extracting the underlying geometry and representative subsample points. For verification, we compare against a KDE variant at extracting the underlying shape of noisy synthetic trajectories travelling alonng the shape. We compare map extraction from GPS traces against current methods. Our method significantly improves runtime while extracting the geometry better or at least comparably. We also compare against maxmin subsampling on an activity recognition data set and find a significant runtime improvement with comparable performance.