论文标题
循环总和的下限,在分母中具有单方面最大平均值
Lower bound for cyclic sums with one-sided maximal averages in denominators
论文作者
论文摘要
令$ \ mathbf {x} =(x_1,\ dots,x_n)$为正实数的$ n $ -tuple,序列$(x_i)_ {i \ in \ in \ mathbb {z}} $是$ n $ n $ - periodic extension。给定一个$ n $ -tuple $ \ mathbf {r} =(r_1,\ dots,r_n)$的正整数,让$ a_i $是$ x_ {i+1}的算术平均值,\ dots \ dots,x_ {i+r_i} $。我们形成了$ s_n(\ mathbf {x},\ mathbf {r})= \ sum_ {i = 1}^n x_i/a_ {i} $,遵循已长期研究的shapiro sums的模式,与所有$ r_i = 2 $ diananda us_ sums corpor come y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y ye y y y ye,我们找到$ \ mathbf {r} $ - 独立下限$ a_ {n,*} = \ inf _ {\ MathBf {r}} \ inf _ {\ mathbf {x}} s_n(s_n(x},\ natif {x} $ n Is $ n y IT), $ a_ {n,*} = e \ log n -a+o(1/\ log n)$。
Let $\mathbf{x}=(x_1,\dots,x_n)$ be an $n$-tuple of positive real numbers and the sequence $(x_i)_{i\in\mathbb{Z}}$ be its $n$-periodic extension. Given an $n$-tuple $\mathbf{r}=(r_1,\dots,r_n)$ of positive integers, let $a_i$ be the arithmetic mean of $x_{i+1},\dots,x_{i+r_i}$. We form the cyclic sums $S_n(\mathbf{x},\mathbf{r})=\sum_{i=1}^n x_i/a_{i}$, following the pattern of the long studied Shapiro sums, which correspond to all $r_i=2$, and more general Diananda sums, where all $r_i$ are equal. We find the asymptotics of the $\mathbf{r}$-independent lower bounds $A_{n,*}=\inf_{\mathbf{r}}\inf_{\mathbf{x}} S_n(\mathbf{x},\mathbf{r})$ as $n\to\infty$: it is $A_{n,*}=e\log n - A+O(1/\log n)$.