论文标题

求解基于EPINNS的多维Schrödinger方程

Solving Multi-Dimensional Schrödinger Equations Based on EPINNs

论文作者

Liu, Jinde, Yang, Chen, Jiang, Gang

论文摘要

由于神经网络在高维和非线性问题中的良好表现,机器学习正在取代传统方法,并成为多维Schrödinger方程的特征值和波浪功能解决方案的更好方法。本文提出了一种基于神经网络的数值方法,以解决多维固定式Schrödinger方程的多个激发态。我们将正交归一化条件引入损失函数,使用神经网络的频率原理自动从低至高能水平获得多个激发态征态征和特征值,并提出一种退化水平处理方法。方程残差和能量不确定性的使用使每个能级的误差收敛到0,这有效地避免了误差收敛的数量级干扰,提高了波函数的准确性并提高了特征值的准确性。将我们的结果与先前的工作进行比较,谐波振荡器问题的准确性至少是较少的训练时期的数量级。我们完成对典型的可解析schrödinger方程的数值实验,例如谐波振荡器和类似氢的原子,并提出了每个物理量的计算和评估方法,这证明了我们方法对特征值问题的有效性。我们成功对氢原子问题激发态的解决方案为解决多电子原子分子的固定schrödinger方程提供了潜在的思想。

Due to the good performance of neural networks in high-dimensional and nonlinear problems, machine learning is replacing traditional methods and becoming a better approach for eigenvalue and wave function solutions of multi-dimensional Schrödinger equations. This paper proposes a numerical method based on neural networks to solve multiple excited states of multi-dimensional stationary Schrödinger equation. We introduce the orthogonal normalization condition into the loss function, use the frequency principle of neural networks to automatically obtain multiple excited state eigenfunctions and eigenvalues of the equation from low to high energy levels, and propose a degenerate level processing method. The use of equation residuals and energy uncertainty makes the error of each energy level converge to 0, which effectively avoids the order of magnitude interference of error convergence, improves the accuracy of wave functions, and improves the accuracy of eigenvalues as well. Comparing our results to the previous work, the accuracy of the harmonic oscillator problem is at least an order of magnitude higher with fewer training epochs. We complete numerical experiments on typical analytically solvable Schrödinger equations, e.g., harmonic oscillators and hydrogen-like atoms, and propose calculation and evaluation methods for each physical quantity, which prove the effectiveness of our method on eigenvalue problems. Our successful solution of the excited states of the hydrogen atom problem provides a potential idea for solving the stationary Schrödinger equation for multi-electron atomic molecules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源