论文标题

DARE:大规模手写日期识别系统

DARE: A large-scale handwritten date recognition system

论文作者

Dahl, Christian M., Johansen, Torben S. D., Sørensen, Emil N., Westermann, Christian E., Wittrock, Simon F.

论文摘要

历史文档的手写文本识别是一项重要的任务,但由于缺乏足够的培训数据以及写作风格的巨大差异和历史文档的退化,这仍然很困难。虽然经常使用的神经网络体系结构通常用于手写文本识别,但它们通常在计算上训练昂贵,而复发的好处在任务上差异很大。由于这些原因,重要的是要考虑非电流体系结构。在手写日期识别的上下文中,我们提出了一个基于有效NETV2类模型类别的体系结构,该架构可以快速训练,强大到参数选择,并准确地从许多来源转录手写日期。对于培训,我们介绍了一个包含近1000万个令牌的数据库,该数据库源自超过220万个手写日期,这些日期从不同的历史文档中进行了细分。由于日期是有关历史文档的一些最常见信息,并且历史档案包含数百万此类文件,因此日期的有效和自动转录有可能导致对手动转录的大量成本省钱。我们表明,对手写文本的培训具有较高的写作样式可导致一般手写文本识别的强大模型,并且从DARE系统中转移学习可以大大提高转录精度,即使使用相对较小的培训样本,也可以获得高精度。

Handwritten text recognition for historical documents is an important task but it remains difficult due to a lack of sufficient training data in combination with a large variability of writing styles and degradation of historical documents. While recurrent neural network architectures are commonly used for handwritten text recognition, they are often computationally expensive to train and the benefit of recurrence drastically differs by task. For these reasons, it is important to consider non-recurrent architectures. In the context of handwritten date recognition, we propose an architecture based on the EfficientNetV2 class of models that is fast to train, robust to parameter choices, and accurately transcribes handwritten dates from a number of sources. For training, we introduce a database containing almost 10 million tokens, originating from more than 2.2 million handwritten dates which are segmented from different historical documents. As dates are some of the most common information on historical documents, and with historical archives containing millions of such documents, the efficient and automatic transcription of dates has the potential to lead to significant cost-savings over manual transcription. We show that training on handwritten text with high variability in writing styles result in robust models for general handwritten text recognition and that transfer learning from the DARE system increases transcription accuracy substantially, allowing one to obtain high accuracy even when using a relatively small training sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源